刘源泉
日期:2025-03-20  发布人:计算机工程学院 

源泉,男,硕士研究生,毕业于大连工业大学,研究方向为机器学习,算法优化,模糊数据分析。研究领域为分数阶导数,梯度下降,区间模糊数据处理。具备扎实的编程技能,熟练掌握Java、Matlab,具有机器学习、深度学习及算法优化的应用经验,发表多篇学术论文:

[1] Yuanquan Liu et al. An interval neural network-based Caputo fractional-order extreme learning machine applied to classification. Applied Soft Computing 167 (2024): 112310. (第一作者,SCI一区,已发表) 

[2] Yan Liu, Yuanquan Liu et al. A Novel Neuro-fuzzy Learning Algorithm for First-Order Takagi– Sugeno Fuzzy Model: Caputo Fractional-Order Gradient Descent Method. International Journal of Fuzzy Systems 26.8 (2024): 2616-2631. (第二作者, SCI 三区,已发表)

[3] Qiang Shao, Yuanquan Liu et al. A smoothing interval neural networks-based Caputo fractionalorder gradient learning algorithm. International Journal of Machine Learning and Cybernetics (2024): 1-17.(第二作者,SCI 三区,已发表) 

[4] Yan Liu, Rui Wang, Yuanquan Liu et al. A novel learning approach to remove oscillations in First‐Order Takagi–Sugeno fuzzy System: gradient Descent‐Based Neuro‐Fuzzy algorithm using smoothing group lasso regularization. Advanced Theory and Simulations 7.2 (2024): 2300545. (第三作者,SCI 四区,已发表) 

[5] Jian Li, Qiang Shao, Yuanquan Liu et al. A Novel Smoothing Framework for Interval-zeroorder Takagi-Sugeno Fuzzy Neural Networks: Combining Interval Analysis with Zero-order TS Systems. 2024 International Conference on New Trends in Computational Intelligence (NTCI). IEEE, 2024. (第三作者,EI国际会议已发表) 

Rui Wang, Yan Liu, Yuanquan Liu et al. A modified learning method for first-order takagisugeno fuzzy system: Gradient-based neuro-fuzzy algorithm employing smoothing group lasso regularization. 2023 International Conference on New Trends in Computational Intelligence (NTCI). Vol. 1. IEEE, 2023. (第三作者,EI国际会议已发表)



点击数:
分享到

狗万滚球,狗万app计算机工程学院